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Abstract

Since the discovery of anandamide in 1992, our knowledge of the endocannabinoid system and its physiological effects has increased

greatly, not the least as a result of the availability of compounds affecting endocannabinoid function. In the present review, the pharmacology

of the endocannabinoid system is discussed. At present, there are no compounds selectively inhibiting the synthesis of anandamide, and the

mechanisms by which anandamide release and reuptake are blocked are a matter for current debate. In contrast, selective agonists and inverse

agonists at the CB1 and CB2 receptors have been well characterised, as have inhibitors of the metabolism of anandamide by fatty acid amide

hydrolase. Accumulating evidence has suggested that such compounds may be useful for the treatment of a number of disorders. With respect

to the treatment of pain, topical CB1 agonists and CB2 agonists may prove therapeutically useful, and there is evidence that the non-steroidal

inflammatory agent indomethacin produces effects secondary to activation of the endocannabinoid system. Modulation of the

endocannabionid system may also produce neuroprotective effects, although present data would suggest that the observed effects are

highly dependent upon the nature of the neurotoxic insult.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Although historical references to the use of cannabi-

noids for medicinal purposes date back over four thousand
ehavior 81 (2005) 248 – 262
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years (see Adams and Martin, 1996), the structures of the

(at cannabinoid receptors) inactive compounds cannabinol

and cannabidiol, and the active compounds D9-tetrahydro-

cannabinol and D8-tetrahydrocannabinol were not identi-

fied until the middle of the last century (see Adams et al.,

1940a,b; Gaoni and Mechoulam, 1964; Hively et al., 1966;

Mechoulam and Hanus, 2000). Detailed structure–activity

relationship studies (Razdan, 1986) together with radio-

ligand binding studies (Devane et al., 1988) suggested the

presence of a cannabinoid (CB) receptor. CB1 and CB2

receptors were cloned during the early 1990s (Matsuda et

al., 1990; Munro et al., 1993; review, see Howlett et al.,

2002), and shortly after anandamide (AEA) and 2-

arachidonoylglycerol (2-AG) were identified as endoge-

nous cannabinoid (endocannabinoid) compounds (see

Devane et al., 1992; Mechoulam et al., 1995; Sugiura et

al., 1995; Mechoulam and Hanus, 2000). Since then, our
Fig. 1. Pharmacological manipulation of the release, removal and

interaction of AEA with its receptors. ‘‘]’’ indicates an agonist at the

receptors involved, ‘‘Z’’ indicates either a receptor antagonist or an

inhibitor of the process shown, as appropriate. The compounds are by no

means an exhaustive list [JWH133 (6a R,10a R)-3-(1,1-dimethylbutyl)-

6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6 H-dibenzo[b,d]pyran), for exam-

ple, is a CB2 receptor-selective agonist (Huffman et al., 1999) that has

been used among others to characterise the role of CB2 receptors in the

proliferation of glioma cells (see Sánchez et al., 2001) and the reponses

of wide dynamic range dorsal horn neurons in different models of

inflammatory and neuropathic pain (Elmes et al., 2004)] but have been

presented here simply because they are discussed in the present review.

Abbreviations of compounds (when structures are not shown or given

elsewhere): ACEA, N-(2-chloroethyl)-5Z,8 Z,11 Z,14 Z-eicosatetraena-

mide; AM374, palmitylsulfonyl fluoride; AM404, N-(4-hydroxyphenyl)-5

Z,8 Z,11 Z,14 Z-eicosatetraenamide; CP 55,940, (-)-cis-3-[2-hydroxy-4-

(1,1-dimethylheptyl)phenyl]-trans -4-(3-hydroxypropyl)cyclohexanol;

NSAIDs, nonsteroidal anti-inflammatory agents, in this case indometha-

cin and flurbiprofen (see Fowler et al., 2003); OL-135, 1-oxo-1[5-(2-

pyridyl)-2-yl]-7-phenylheptane); OMDM-2, (9Z)-N-[1-((R)-4-hydroxben-

zyl)-2-hydroxyethyl]-9-octadecenamide; PMSF, phenylmethylsulfonyl

fluoride; SR144528, N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] hep-

tan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylben-zyl)-pyrazole-3-

carboxamide; UCM707, N-(fur-3-ylmethyl) 5Z,8 Z,11 Z,14 Z-eicosate-

traenamide; URB597, 3_-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate;

VDM11, (5Z ,8Z ,11Z ,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-

eicosatetraenamide; WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-

(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphtha-

lenylmethanone mesylate.
knowledge of the endocannabinoid system and its physio-

logical roles have expanded enormously (for recent

reviews, see Piomelli, 2003; Gerdeman and Lovinger,

2003; De Petrocellis et al., 2004).

A key to the elucidation of the roles played by

endocannabinoids in the body have been the development

of pharmacological agents that affect their function (see Fig.

1). In the present review, the pharmacology of the

endocannabinoid system is discussed.
2. Endocannabinoid synthesis and release

It is now well established that endocannabinoids are

synthesised and released ‘‘on demand’’ and that this

process can be regulated both physiologically and under

pathological conditions (reviews see Piomelli, 2003;

Fowler, 2003). However, pharmacological agents selec-

tively affecting the synthetic enzymes are lacking, although

tetrahydrolipstatin is a potent inhibitor of diacylglycerol

lipases and has as such been used to identify the

physiological processes involving 2-AG in the brain

(Bisogno et al., 2003; Melis et al., 2004). With respect

to the release of AEA, there is some debate as to its

nature. Initially, it was suggested that the release was

simply the uptake process acting in reverse (Hillard et al.,

1997). However, Kathuria et al. (2003) reported that the

release of AEA into the medium from prelabelled rat

cortical neurons in primary culture was not blocked by the

putative reuptake inhibitor AM404 and suggested that the

release was by passive diffusion rather than reverse

transport. The fact that [3H]AEA can bind to, and be

released by a temperature-dependent first order process

from cell culture wells (Karlsson et al., 2004) does not

make the situation easier. However, Maccarrone et al.

(2002) have reported that estrogen-stimulated AEA release

from prelabelled human endothelial (HUVEC) cells could

be blocked by AM404. More recently, Ligresti et al.

(2004) reported that the release of de novo synthesised

AEA from thapsigargin-stimulated HEK293 cells was

blocked by the putative reuptake inhibitor VDM11.

This latter finding has interesting implications for

studies investigating endocannabinoid tone: should a

compound blocking a bidirectional carrier prevent endo-

cannabinoid effects (by preventing the release of newly

synthesised endocannabinoids) or potentiate it (by prevent-

ing the reuptake of released endocannabinoid)? In this

respect, Ronesi et al. (2004) reported that intracellular

application of VDM11 and AM404 to brain slices via a

patch pipette were able to prevent striatal long term

depression produced by high frequency stimulation. In

contrast, extracellularly applied VDM11 was without

effect. Taken together, the data summarised above would

suggest that the release of AEA can be modulated

pharmacologically, although the mechanism for such a

modulation remains unclear, as indeed, is the case for



Fig. 2. Chemical structures of four CB1 receptor antagonists/inverse agonists.
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cellular AEA accumulation (see the section below relating

to AEA uptake inhibitors).
1 Relatively little clinical data has so far been published for rimonabant,

although it is clear from information in the public domain that the

developers of this drug place high hopes (and considerable investment)

upon its therapeutic usefulness.
3. Interaction with receptors

As it is clear from their name, endocannabinoids activate

CB receptors, although with different levels of efficacy (see

Sugiura et al., 1999) and with different rates of induction of

receptor desensitization (Luk et al., 2004). In addition,

endocannabinoids, in particular anandamide, have been

shown to have effects upon other systems, especially

TRPV1 (vanilloid 1) receptors, either by direct mechanisms

(Zygmunt et al., 1999; see also Pacher et al., 2004, for a

recent study investigating the haemodynamic effects of

AEA in TRPV1�/� mice) or as a result of lipoxygenase-

derived metabolites (Kagaya et al., 2002) (review, see Ross,

2003). A key to our understanding of the cannabinoid-

mediated processes in the body have been the development

of a variety of selective agonists and antagonists for CB1

and CB2 receptors (see Fig. 1 for examples). With respect to

agonists, most of the available information has been

obtained using non-selective ‘‘standard’’ compounds such

as CP 55,940 and WIN 55,212-2 (for a detailed review of

the antinociceptive effects of these compounds, see Pertwee,

2001). CB1 and CB2 selective agonists are now available,

and have provided vital information as to the role of these

agents in fields as diverse as pain processing (see Section

6.1 below) and control of cell proliferation (see Guzmán,

2003).

With respect to blockade of cannabinoid receptors,

compounds such as rimonabant (SR141716A) (Rinaldi-

Carmona et al., 1994), the closely related AM251 (designed

to allow radioiodination) (Gatley et al., 1996) (structures,

see Fig. 2) and SR144528 (Rinaldi-Carmona et al., 1998)

have played central roles in determining the contribution of
CB1 and CB2 receptors to endocannabinoid effects, and

rimonabant is now in phase III clinical trials for weight

reduction and an aid to smoking cessation1. Rimonabant and

AM251 are generally described as inverse agonists rather

than pure antagonists. Whether or not this is of importance

in vivo remains to be determined, since whilst constitutive

activity can clearly be demonstrated in heterologous

expression systems (see e.g. Nie and Lewis, 2001 for

detailed molecular studies), there is some debate as to

whether native CB1 receptors are constitutively active. In

physiological systems, a situation whereby, for example, a

CB1 receptor agonist produces a response and rimonabant

alone produces an opposite effect may be interpreted either

by suggesting the presence of constitutively active recep-

tors, or alternatively the presence of an endocannabinoid

tone. An example of this is the opposite effects of AEA and

rimonabant upon the sleep-waking cycle in rodents,

accompanied by opposite changes in the brain levels of

adenosine (Santucci et al., 1996; Murillo-Rodrı́guez et al.,

2003). More important, at least in terms of development of

CB1 receptor antagonists/inverse agonists as possible anti-

obesity agents (see Verty et al., 2004, and references

therein), is the evidence of endocannabinoid tone control-

ling food intake (Di Marzo et al., 2001). However, in

contrast, Wade et al. (2004) demonstrated that whilst the CB

receptor agonist WIN 55,212-2 decreased both basal and

forskolin-stimulated striatal extracellular levels of cAMP in

awake rats after local administration in a manner blocked by

rimonabant, the antagonist alone had no effect, arguing

against either a general endocannabinoid tone (or constitu-

tive receptors) in vivo.



Table 1

In vivo effects of putative anandamide transporter inhibitors

Compound and dose Finding Reference

AM404

10 mg/kg i.v. SSwiss mice No effect on the hot plate test per se at 20, 30 and 60 min after administration,

but potentiates and prolongs the increased latency produced by

20 mg/kg i.v. AEA

Beltramo et al. (1997)

10 mg/kg i.v. S guinea pigs Modest effect on blood pressure per se, potentiates the , systemic blood

pressure produced by 5 mg/kg i.v. AEA in vagotomised and

pancuronium-treated animals

Calignano et al. (1997)

10 mg/kg i.p S Wistar rats , plasma prolactin but not luteinizing hormone levels; j inactivity and ,

ambulation but not exploration or frequency of stereotypy in open field test

González et al. (1999)

10 mg/kg i.p. S Wistar rats j AEA but not PEA levels in plasma; j immobility and , locomotion; not seen

in rats pretreated with 0.5 mg/kg i.p. rimonabant

Giuffrida et al. (2000)

10 Ag i.c.v. S Wistar rats j immobility, not seen in rats pretreated with 1 mg/kg i.p. rimonabant. No

effects on behaviours like grooming, oral movements, sniffing and

hotplate jumping

Beltramo et al. (2000)

2 Ag i.c.v. S Wistar rats , apomorphine induced yawning, not seen in rats pretreated with

0.2 mg/kg i.v. rimonabant.

Beltramo et al. (2000)

10 mg/kg i.v. Biozzi ABH mice

(gender not given)

, spasticity in mice induced to display chronic relapsing experimental

allergic encephalomyelitis

Baker et al. (2001)

62.5 Ag topically (eye)

normotensive S and

9 Dutch Belted rabbits

, intraocular pressure when administered in 2-hydroxy-h-cyclodextrin;
initial j when administered in propylene glycol

Laine et al. (2001)

3 nmol i.t. C57/B6 mice

(gender not given)

, pain related behaviour in the formalin test to the level seen with 3 nmol i.t.

AEA. Not additive with AEA. Blocks pronociceptive effect of NO-donor RE-

2047 (45 mg/kg i.p.)

Gühring et al. (2002)

10 mg/kg i.p. C57/B6 mice

(gender not given)

, jumping behaviour due to spontaneous withdrawal after repeated morphine

treatment. Less marked effects with 2 mg/kg i.p. AM404. No significant

effects upon naloxone-induced withdrawal

Del Arco et al. (2002)

10 mg/kg i.p.S
Sprague–Dawley rats

, ambulatory activity in 3-nitropropionic acid-lesioned rats; effect not blocked

by rimonabant (3 mg/kg i.p.), but blocked by capsazepine (10 mg/kg i.p.)

Lastres-Becker et al.

(2002, 2003b)

1 mg/kg s.c. repeated injections

(prenatal days E11–E20),

S and 9 Naples High

Excitability (NHE) rats

, activity in novelty situations on postnatal day 60, as assessed

by the Làt-maze.

Viggiano et al. (2003)

0.1–1 mg/kg i.p.

S Sprague–Dawley rats

No effect on motor activity produced by L-DOPA (150 mg/kg i.p.)+

benserazide (50 mg/kg i.p.) in reserpinised animals

Segovia et al. (2003)

1 and 5 mg/kg i.p.; 1 and 5 Ag
intrastriatally, S Wistar rats

, amphetamine-induced turning, blocked by 1 :1 cotreatment with AM251,

in 6-hydroxydopamine unilaterally nigral lesioned animals. i.p. AM404 also

reduced the sensorimotor deficit seen in the lesioned animals. Significant

interaction between intrastriatal AM404 and either quinpirone or agents

interacting with 5-HT1B receptors

Fernandez-Espejo et al.

(2004)

5 mg/kg i.p. S Swiss mice , prepulse inhibition (PPI) after both acute or chronic administration; effect

blocked by rimonabant (1 mg/kg)

Fernandez-Espejo and

Galan-Rodriguez (2004)

10 mg/kg i.p. FAAH+/+mice No effect on body temperature alone. j AEAs (5 mg/kg i.p.)

hypothermic effects.

Fegley et al. (2004)

10 mg/kg i.p. FAAH�/�mice Small decrease in body temperature alone. Powerful increase in the

hypothermic effects of AEA (2 mg/kg i.p.). Effect blocked by

rimonabant (0.3 mg/kg i.p.) but not by capsazepine (30 mg/kg i.p.)

Fegley et al. (2004)

VDM11

10 mg/kg i.v. Biozzi ABH mice

(gender not given)

, spasticity in mice induced to display chronic relapsing experimental

allergic encephalomyelitis

Baker et al. (2001)

10 mg/kg i.p. S ICR mice Potentiates the reduction of intestinal transit produced by i.p. administration

of acetic acid. Effect blocked by 1 mg/kg i.p. rimonabant

Mascolo et al. (2002)

5 mg/kg i.p. S Sprague–Dawley rats No effect on ambulatory activity in 3-nitropropionic acid-lesioned rats

or in control rats

Lastres-Becker et al.

(2003b)

10 mg/kg i.p. S ICR mice Blocks intestinal fluid accumulation produced by cholera toxin;

effect antagonised by 0.3 mg/kg rimonabant

Izzo et al. (2003)

5 mg/kg i.p. S Wistar rats j latency on hot plate test (not seen with 1 or 10 mg/kg doses);

potentiates effect of 2 mg/kg i.p. AEA in this test. No effect

of either compound at these doses either separately or combined

on locomotor activity

de Lago et al. (2004)

(continued on next page)
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Table 1 (continued)

Compound and dose Finding Reference

VDM11

5 mg/kg into tumour, twice

weekly to athymic

S mice (Charles-River)

inocculated with

Kras-transformed

thyroid cells

, tumour growth after 5 weeks to 37% of that seen for controls.

j2-AG but not AEA levels in the tumours.

Bifulco et al., 2004

UCM707

0.1–10 mg/kg S
Wistar rats

j time spent in inactivity (10 mg/kg); no effects per se on ambulatory,

exploratory or stereotypic activity. No effects on hot plate test. In follow up,

0.5 mg/kg potentiates effect of subeffective dose (0.3 mg/kg i.p.) of AEA (on ,

ambulatory activity and j time spent in inactivity); a similar result was seen for

hot plate latency for 1 mg/kg UCM707 and 2 mg/kg i.p AEA

de Lago et al. (2002)

3 mg/kg s.c.,

S C57BL/6N mice

Small (~15%) but significant reduction in seizure scores following i.p. kainic

acid administration (35 mg/kg). The opposite effect was seen with rimonabant

(3 mg/kg s.c.)

Marsicano et al. (2003)

OMDM-2

5 mg/kg i.p. S Wistar rats j latency on hot plate test (not seen with 1 or 10 mg/kg doses); no effect in

presence of 2 mg/kg i.p. AEA in this test. No effect of the compound per se

upon locomotor activity, but significant , ambulation and exploratory activity

in combination with AEA. No effects of these parameters with AEA alone. The

enantiomer OMDM-1 produced no significant changes in these tests

de Lago et al. (2004)

5 mg/kg i.v. Biozotti ABH

mice (gender not given)

, spasticity in mice induced to display chronic relapsing experimental allergic

encephalomyelitis. Also seen with OMDM-1 at this dose

de Lago et al. (2004)
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In vitro, rimonabant at micromolar concentrations pro-

duces the opposite effects upon brain G-protein function

(measured by effects upon either [35S]GTPgS binding or

forskolin-stimulated cAMP accumulation) to those seen with

CB1 receptor agonists (Sim-Selley et al., 2001; Mato et al.,

2002). However, Savinainen et al. (2003) recently reported

that the decreased binding of [35S]GTPgS to rat cerebellar

membranes produced by 10 AM concentrations of rimona-

bant and AM251 was blocked by the A1 adenosine receptor

antagonist 8-cyclopentyl-1,3-dipropylxanthine. Similarly,

rimonabant and AM251 produced a small, but statistically

significant rightward shift in the dose–response curve for the

adenosine receptor agonist 2-chloroadenosine with respect to

its ability to stimulate [35S]GTPgS binding. In contrast,

binding stimulated by carbachol and baclofen were not

affected by rimonabant and AM251 (Savinainen et al.,

2003). These data would suggest that the inhibition of

[35S]GTPgS binding at 1 and 10 AM concentrations of

rimonabant and AM251 is an indication of an influence upon

adenosine A1 receptor function rather than a demonstration

of an inverse agonist property at CB1 receptors.

The interaction with A1 receptors is by no means a unique

effect of these compounds at AM concentrations, since non-

CB1 receptor mediated effects upon ERK phosphorylation in

JB6 P+ cells (Berdyshev et al., 2001), TRPV1 receptors

expressed in hVR1-HEK cells (De Petrocellis et al., 2001),

Ca2+-induced relaxation of mesenteric branch arteries from

CB1 receptor knockout (CB1
�/�) mice (Bukoski et al., 2002),

and sodium channel function in mouse brain synaptic

preparations (Liao et al., 2004) have also been reported.
Rimonabant can also produce pharmacological and behav-

ioural effects in CB1
�/�mice (Fride et al., 2003; Bátkai et al.,

2004). This lack of selectivity at high concentrations is an

important caveat in the interpretation of data with CB1

antagonists, and an obvious recommendation would be the

use of several compounds from different chemical classes,

such as, for example, LY320135 (Felder et al., 1998) and O-

2654 (Thomas et al., 2004) (structures, see Fig. 2).

From the above discussion, it remains unclear whether

opposite effects of cannabinoid agonists and inverse agonists

in vivo reflect the presence of constitutively active receptors,

endocannabinoid tone, or both. Hopefully, this dilemma will

be aided by the development of ‘‘neutral’’ CB1 receptor

antagonists (as opposed to inverse agonists), such as has

been suggested to be the case for O-2654 (Thomas et al.,

2004). An alternative approach would be the use of

compounds selectively affecting the levels of extracellular

endocannabinoids, since such compounds would be

expected to enhance endocannabinoid tone without affecting

constitutive activity. Such compounds are discussed below.
4. AEA uptake inhibitors

Most of our knowledge concerning the reuptake of

endocannabinoids has been with respect to AEA, and this

section is in consequence confined to this endocannabinoid.

There is at present considerable debate as to the nature, or

even existence, of an AEA transporter protein, current

thinking ranging from facilitated transport and/or endocytic
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uptake to a passive diffusion process driven to a varying

extent by the AEA metabolising enzyme fatty acid amide

hydrolase (FAAH) (Glaser et al., 2003; Hillard and

Jarrahian, 2003; McFarland and Barker, 2004; see also

Ronesi et al., 2004; Ligresti et al., 2004; Fegley et al., 2004;

Ortega-Gutiérrez et al., 2004; McFarland et al., 2004). One

argument in favour of the existence of a transport process is

that it can be inhibited pharmacologically by arachidonoyl-

based compounds such as AM404 (Beltramo et al., 1997),

VDM11 (De Petrocellis et al., 2000) and UCM707 (López-

Rodrı́guez et al., 2001), and by the oleoyl-based enantio-

meric pair OMDM-1 and OMDM-2 (Ortar et al., 2003).

Why the compounds act as inhibitors, in the case of

AM404 in a competitive manner (Rakhshan et al., 2000) is

not without controversy (see e.g. Patricelli and Cravatt,

2001)–indeed the compounds can prevent the adsorption of

AEA to plastic cell culture wells at similar concentrations

(Karlsson et al., 2004; Fowler et al., 2004; Ortega-Gutiérrez

et al., 2004)–but it is clear that they are biologically active

and can potentiate the effects of AEA both in vitro

(Beltramo et al., 1997) and in vivo (Table 1), as well as

prevent effects of exogenous AEA upon TRPV1 receptors

(which require intracellular transport since the binding site

for this molecule is on the intracellular face of the receptor)

in vitro (De Petrocellis et al., 2001; Andersson et al., 2002;

Jonsson et al., 2003). In addition, the compounds produce

effects per se both in vitro (Gubellini et al., 2002; Trettel and

Levine, 2003; Ronesi et al., 2004) and in vivo (Table 1).

Most of the data have been obtained using AM404,

which, however, shows little selectivity for the uptake

process over FAAH and indeed acts as a substrate for FAAH

(Jarrahian et al., 2000; Fegley et al., 2004) and in addition

interacts with TRPV1 receptors (Zygmunt et al., 2000) as a

partial agonist (Roberts et al., 2002). This compound can

also produce effects in vitro at low micromolar concen-

trations (i.e. similar to those used to block uptake) that are

not prevented by either CB1 receptor antagonists or TRPV1

receptor antagonists (Jonsson et al., 2003; Kelley and

Thayer, 2004). Nevertheless, the report that AM404 can

potentiate the hypothermic effects of AEA in FAAH�/�

mice in a manner blocked by rimonabant but not capsaze-

pine (Fegley et al., 2004) does support an action of this

compound in vivo that can be distinguished from effects

upon FAAH and TRPV1 receptors. UCM707, OMDM-1

and OMDM-2 show little effect on FAAH and TRPV1

receptors (López-Rodrı́guez et al., 2003; Ortar et al., 2003)

and are now generally available for experimental work, so it

is likely that our knowledge in this area will increase.
5. Inhibitors of endocannabinoid metabolism

Effective metabolism of endogenous signaling molecules

is a prerequisite for their action, and it is now well

established that both AEA and 2-AG are rapidly metab-

olised (see e.g. Wiley et al., 2000; Járai et al., 2000). In the
case of AEA, the key enzyme for metabolism is FAAH, and

mice lacking this enzyme show raised levels of AEA in the

brain (Cravatt et al., 2001). Similarly, selective inhibition of

FAAH produces an increased level of AEA, but not 2-AG in

the brain (Kathuria et al., 2003). PMSF was discovered

fortuitously to inhibit FAAH (Deutsch and Chin, 1993) and

thereafter shown at a dose of 30 mg/kg i.p. to potentiate the

actions of AEA in vivo (Compton and Martin, 1997; Wiley

et al., 2000) without producing deleterious actions secon-

dary to inhibition of acetylcholinesterase (Quistad et al.,

2002). A variety of FAAH inhibitors have since been

identified (review, see Fowler, 2004a). Perhaps the com-

pounds that have received the most attention are the

carbamate derivatives URB532 and URB597, in view of

the finding that they have positive effects in an animal

model for anxiety (Kathuria et al., 2003), a finding

consistent with the role of CB1 receptors in the regulation

of anxious behaviour (Urigüen et al., 2004; Haller et al.,

2004). However, other compounds as diverse as 1-(2-

benzoxazolyl)-1-oxo-9(Z)-octadecene, AM374, OL-135,

propofol and the NSAIDs indomethacin and flurbiprofen

inhibit FAAH in vitro (Paria et al., 1996; Deutsch et al.,

1997; Boger et al., 2000; Patel et al., 2003; Fowler et al.,

2003; Lichtman et al., 2004b), a property that may

contribute to their pharmacological effects in vivo (Baker

et al., 2001; Fedorova et al., 2001; Gühring et al., 2002;

Ates et al., 2003; Patel et al., 2003; Arizzi et al., 2004; Holt

et al., 2004; Lichtman et al., 2004b).

In addition to FAAH, AEA is a substrate for cyclo-

oxygenase-2 and lipoxygenases (see Kozak and Marnett,

2002; Maccarrone, 2004) in vitro. Weber et al. (2004)

treated male Swiss Webster mice with AEA (50 mg/kg i.v.)

and measured the liver, kidney, lung and small intestine

levels of AEA and cyclooxygenase-2 derived metabolites

(prostamide F2a, prostamide E2+D2) 30 min later. For

normal mice, there was little or no detectable prostamide

formation. However, when the experiment was repeated in

FAAH�/� mice, detectable levels of prostamides (together

with raised levels of AEA) were seen (Weber et al., 2004).

Another study has reported in an abstract the detection of

prostamide F2a in both brain and peripheral tissues from

FAAH+/+ and FAAH�/� mice (Woodward et al., 2004).

With respect to the brain, evidence that cyclooxygenase-2

may be physiologically important for endocannabinoid

metabolism has been suggested by the finding that a

cyclooxygenase-2 inhibitor, but not an FAAH inhibitor,

potentiated depolarization-induced suppression of inhibition

in hippocampal slices (a process mediated by endocanna-

binoids) (Kim and Alger, 2004). In contrast, in the

amygdala, endocannabinoid-mediated long-term depression

of inhibitory GABAergic synaptic transmission is enhanced

in FAAH�/� mice (Azad et al., 2004), whereas in other

systems, 2-AG may be more important (Melis et al., 2004;

Makara et al., 2004).

In the case of 2-AG, multiple metabolic pathways are

also possible, since this endocannabinoid is a substrate for
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FAAH, monoacylglycerol lipase (MAGL), lipoxygenases

and cyclooxygenases (review, see Fowler, 2004a). In the

brain, however, MAGL appears to be the dominant enzyme

(Dinh et al., 2002; Saario et al., 2004), although additional

cytosolic 2-AG metabolising enzymes may be present

(Dinh et al., 2004). MAGL has been cloned (Karlsson et

al., 1997; Dinh et al., 2002), and is presynaptically located

in the hippocampus, in contrast to FAAH, which is found

postsynaptically (Gulyas et al., 2004). To our knowledge no

potent (i.e. IC50 values <1 AM) MAGL-selective inhibitors

or genetically modified animals have yet been reported in

the literature. ‘‘Standard’’ FAAH inhibitors like PMSF and

acyltrifluoromethyl ketones are in fact less potent towards

MAGL than FAAH (Bisogno et al., 1997; Goparaju et al.,

1999; Di Marzo et al., 1999; Dinh et al., 2002; Saario et al.,

2004; Ghafouri et al., 2004). However, compounds that

have equal or greater selectivity for MAGL than FAAH in

vitro (albeit with IC50 values >10 AM) have been reported

(Ghafouri et al., 2004; Cascio et al., 2004; Makara et al.,

2004), so it is to be hoped that further investigations will

identify potent selective MAGL inhibitors.
6. Modulation of the endocannabinoid system as a

therapeutic approach

It is clear that the multitude of physiological (and

pathological) processes involving cannabinoid receptors

raise a number of therapeutic targets. This subject has been

the topic of extensive recent reviews (see e.g. Guzmán,

2003; Baker et al., 2003; Lastres-Becker et al., 2003a;

Harrold and Williams, 2003) and so the present article will

confine itself to two therapeutic areas, pain processing and

neuroprotection. As pointed out in the introduction,

cannabinoids have been used for medicinal purposes for a

very long time and the debate concerning whether or not

‘‘medicinal marijuana’’ should be an acceptable form of

treatment continues (see e.g. Wingerchuk, 2004). Anecdotal

evidence for the usefulness of cannnabis extracts encom-

passes a wide variety of ailments, although its possible

utility for the treatment of pain has been a recurring theme

(see Reynolds, 1890). The commercial development of

cannabis extracts such as Sativexi and their clinical

evaluation in properly controlled tests have started to

provide crucial information as to the therapeutic usefulness

of cannabinoids, and some double-blind placebo-controlled

studies have now been reported in the literature with respect

to the alleviation of pain either per se or as a symptom of

multiple sclerosis (Wade et al., 2003; Zajicek et al., 2003;

Neef et al., 2003; Berman et al., 2004; see also Svendsen et

al. (2004) for a recent study with dronabinol). A key issue,

of course, will always be the presence of unwanted

psychotropic effects of centrally acting cannabinoids (Hues-

tis et al., 2001; D’Souza et al., 2004) which can be

minimised by the use of carefully controlled formulations,

but never removed (thereby placing a limit on possible
efficacy via limitation of possible dosages), unless, of

course, cannabinoids lacking psychotropic effects can be

identified. One such compound may be ajulemic acid (CT-3)

which has been the subject of a preliminary placebo-

controlled clinical trial as an analgesic (Karst et al., 2003;

see Burstein et al., 2004).

An alternative approach has been made possible by the

identification of the different components of the endocan-

nabinoid system. Thus, it may be possible to target receptors

that are not present in the brain (by the topical application of

CB1 receptor agonists or the use of CB2 receptor agonists).

An alternative approach would be to bolster up existing

cannabinoid signals rather than overlaying new signals (by

the use of inhibitors of endocannabinoid uptake and

metabolism). These possibilities, which have not as yet

been tested clinically, are discussed below.

6.1. The endocannabinoid system and pain processing

A large body of evidence now supports the contention

that the endocannabinoid system is involved in pain

processing, and that antinociceptive effects of cannabinoids

involve supraspinal, spinal and peripheral CB1 receptors, as

well as peripheral CB2 receptors (see Pertwee, 2001; Rice,

2001; Walker and Huang, 2002; Scott et al., 2004). In

addition, endogenous compounds related to AEA, such as

arachidonoyl glycine and palmitoylethanolamide have anti-

nociceptive actions (Jaggar et al., 1998; Calignano et al.,

1998; Huang et al., 2001). The case of palmitoylethanola-

mide is particularly interesting, since the antinociceptive

effects of this compound are blocked by SR144528 (Jaggar

et al., 1998; Calignano et al., 1998), although palmitoyle-

thanolamide itself has no affinity for CB2 receptors

(Lambert et al., 1999), raising the possibility that an as yet

unidentified receptor sensitive to SR144528 is involved.

There is also evidence for other ‘‘CB-like receptors’’, often

based upon residual activities of (endo)cannabinoids in

CB1
�/� mice (see e.g. Di Marzo et al., 2000; Baskfield et al.,

2004). As yet, these additional receptors have not been

cloned, and a detailed discussion of their activities is beyond

the scope of the present review.

The involvement of the endocannabinoid system in pain

processing suggests a number of potential therapeutic

targets, that can be summarised briefly below.

6.1.1. Selective activation of peripheral CB1 receptors

The peripheral component of CB1 receptors in pain

processing would suggest that local administration of

cannabinoids may produce beneficial effects without the

problems of unwanted psychotropic effects. There is

certainly good evidence in experimental animals that either

intraplantar or topical administration of cannabinoids can

produce antinociceptive effects in a manner blocked by

rimonabant or AM251 (Richardson et al., 1998; Fox et al.,

2001; Nackley et al., 2003b; Dogrul et al., 2003). Topical

cannabinoids may also act synergistically with topically
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applied morphine (Yesilyurt et al., 2003). The selective CB1

receptor agonist ACEA has also been demonstrated to

possess peripherally mediated effects upon noxious soma-

tosensory processing that are blocked by rimonabant (Kelly

et al., 2003). This compound has more recently been found

in vitro also to produce effects mediated by TRPV1

receptors, although it lacks the pungency associated with

TRPV1 agonists such as capsaicin (Price et al., 2004).

6.1.2. CB2 receptor agonists

The lack of central CB2 receptors (other than on activated

microglia) make them an attractive target for drug develop-

ment. Initially, it was demonstrated that the CB2 receptor

agonist HU308 (structure shown in Fig. 3) was efficaceous in

the formalin model in a manner blocked by SR144528

(Hanus et al., 1999). Subsequent studies have demonstrated

that the CB2 receptor agonists AM1241 (structure shown in

Fig. 3) andGW405833 (1-(2,3-dichlorobenzoyl)-5-methoxy-

2-methyl-(2-(morpholin-4-yl)ethyl)-1H-indole) have antino-

ciceptive effects in a number of models of inflammatory and,

in the case of AM1241, neuropathic pain (Malan et al., 2001;

Clayton et al., 2002; Quartilho et al., 2003; Ibrahim et al.,

2003; Nackley et al., 2003a; Hohmann et al., 2004).

6.1.3. Modulation of endocannabinoid levels

The finding that intraplantar injection of formalin

produces a release of anandamide in the periaqueductal grey

region (Walker et al., 1999) would suggest that compounds

preventing the breakdown of anandamide may be useful.

Unwanted central effects would be unlikely, since the levels

of AEA in other areas of the brain would be predicted to

remain low. This contention is supported by the finding that

mice lacking FAAH do not show overt signs of central CB1

receptor activation, but do have a reduced pain sensitivity in

models of thermal and inflammatory pain, but not in the

chronic constriction injury model of neuropathic pain

(Cravatt et al., 2001; Lichtman et al., 2004a). Interestingly,

animals lacking peripheral, but not central, FAAH (‘‘FAAH-

NS mice’’) show greater sensitivities to thermal nociception

than FAAH�/�mice, but retain the reduced oedema response

to intraplantally administered carrageenan that is seen in the

FAAH�/� mice (Cravatt et al., 2004). FAAH inhibitors have

modest effects per se in models of thermal nociception,
Fig. 3. Chemical structures of two CB2 receptor agonists. Note that the

structure of AM1241 is that shown in the study of Ibrahim et al. (2003).
although they of course potentiate the antinociceptive effects

of exogenous AEA (Compton and Martin, 1997; Kathuria et

al., 2003, Lichtman et al., 2004b). With respect to the

formalin test of inflammatory pain, Lichtman et al. (2004b)

found that the selective FAAH inhibitor OL-135 dose

dependently reduced both phase 1 and 2 pain behaviours

in a manner that was blocked by rimonabant but not by

SR144528. The findings that the antinociceptive effects of

the NSAIDs flurbiprofen and indomethacin, when spinally

administered, in the formalin test involve CB1 receptors

(Gühring et al., 2002; Ates et al., 2003; for review, see

Fowler, 2004b) are consistent with an activation of the

endocannabinoid system in the actions of these compounds.

In addition, we have found that the ability of indomethacin to

reduce carrageenan-induced inflammation of the mouse paw

can be blocked by SR144528 (Holt et al., 2004). Whether or

not FAAH inhibition is involved in these effects awaits

elucidation.

6.2. The endocannabinoid system and neuroprotection

The role of endocannabinoids in neuroprotection has

been reviewed in detail elsewhere (Fowler, 2003), and so

will only be discussed briefly here. In essence, several

independent lines of evidence suggest that under certain

conditions, compounds modulating the endocannabinoid

system may have useful neuroprotective actions.

& Neurotoxic insult almost invariably produces an increase

in the levels of AEA and related N-acyl ethanolamines.

Recent examples of this include the massive increase in

the levels of AEA following permanent middle artery

occlusion in rats (Berger et al., 2004), the finding of an

increased level of AEA in the microdialysate from a

stroke patient (Schäbitz et al., 2002) and the increased

levels of AEA following excitotoxic insults (Hansen et

al., 2001; Marsicano et al., 2003). AEA levels are also

increased in the striatum following unilateral lesion of

rats with 6-OHDA (Gubellini et al., 2002). The notion of

a localized increase in endocannabinoid levels raises the

obvious possibility that compounds preventing endocan-

nabinoid breakdown may be useful: in unaffected

regions, the increased endocannabinoid levels secondary

to block of breakdown will not be sufficient to activate

local CB1 receptors to a degree resulting in unwanted

effects, whereas in the affected region, CB1 receptors will

be activated (see Fig. 4 for a schematic representation).

There are case reports of cannabis smokers suffering

from cerebrovascular events which may (or of course

may not) be secondary to cardiovascular effects of

cannabis (Finsterer et al., 2004). If this is the case, then

a local activation of CB1 receptors in the affected region

would be more preferable to a generalised effect on all

CB1 receptors. Whether or not a local potentiation of

AEA is therapeutically desirable, however, is a matter of

some contention (see below).



Fig. 4. Schematic representation of the hypothetical changes in the

concentration of AEA in different areas of the brain following an ischemic

insult. Unfilled columns (‘‘�’’) and filled columns (‘‘+’’) are the expected

levels of anandamide in the absence and presence, respectively, of an

FAAH inhibitor. In non-affected regions, the AEA level remains low

(Berger et al., 2004), and in consequence the effect of an FAAH inhibitor is

presumed to be insufficient to raise AEA levels sufficiently to produce

significant activation of CB1 receptors (the threshold level is illustrated as a

dotted line). In contrast, in the affected region, a dramatic increase in AEA

levels is found (Schäbitz et al., 2002; Berger et al., 2004) and the

concomitant inhibition of FAAH is presumed to increase extracellular levels

to those required for the activation of local CB1 receptors.
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& Middle cerebral artery occlusion in rats increases the

level of CB1 receptor expression (Jin et al., 2000). Mice

with genetically deleted CB1 receptors show more

severe damage following ischaemic and excitotoxic

insult (Parmentier-Batteur et al., 2002; Marsicano et

al., 2003).

& Modulation of cannabinoid receptor tone affects the

outcome following neurotoxic insult. The resultant

response appears to be dependent upon a number of

factors, since in some cases the cannabinoid receptor

agonists show neuroprotective effects (see e.g.

Nagayama et al., 1999; Panikashvili et al., 2001; van

der Stelt et al., 2001a; Mauler et al., 2002; Martı́nez-

Orgado et al., 2003), whereas in other studies it is

rimonabant that is neuroprotective (Hansen et al.,

2002; Berger et al., 2004; Muthian et al., 2004). The

ability of AEA to activate TRPV1 receptors may also

be a complicating factor. Thus, AEA given i.c.v.

produces an increased hippocampal calpain activity

and cell loss 24 h after injection, a cerebral oedema at

24 h to 7 days, and an impaired performance in the

Morris water maze at 17 to 20 days (Cernak et al.,

2004). The neuron loss and cognitive deficits were

antagonised by capsazepine and the calpain inhibitor

SJA6017 but not by AM251 (Cernak et al., 2004).

These authors, in their title, referred to a ‘‘dark side’’

of endocannabinoids. Similarly, genetic deletion of

FAAH increases the seizure sensitivity to high doses

of kainate (Clement et al., 2003). However, the

situation is by no means simple, since AEA (in a

manner antagonised by rimonabant but not capsaze-

pine), capsaicin and the combined CB1/TRPV1 agonist

arvanil reduce the lesion volume 7 days after intra-
cerebral ouabain administration (van der Stelt et al.,

2001b; Veldhuis et al., 2003).

The above discussion has mainly considered potentiation

of endocannabinoids, the levels of which are increased by

the toxic insult. However, a situation where prevention of a

decreased endocannabinoid tone may be useful has been

suggested by the recent study of Maccarrone et al. (2004).

These authors found that repeated i.c.v. administration of the

HIV-1 coat glycoprotein gp120 (100 ng) increased cortical

FAAH activity and decreased cortical AEA levels. The

cortical apoptosis produced by this treatment was reduced

by concomitant i.c.v. treatment with the FAAH inhibitor

methylarachidonoyl fluorophosphonate (0.2 Ag), whereas

VDM11, rimonabant , SR144528 and capsazepine (all 2 Ag)
were without effect (Maccarrone et al., 2004). The authors

concluded on the basis of this and other studies that AEA

can either induce, or prevent apoptosis, depending upon the

experimental situation.

Another important aspect of neuroprotection is the

involvement of neuroinflammation. Post-ischemic neuro-

inflammation is postulated to be of importance for cell

death in the penumbra following a stroke (for review, see

Dirnagl et al., 1999). As previously mentioned, the levels

of many endocannabinoids increase following a neurotoxic

insult. Some of the endocannabinoids, e.g AEA and 2-AG ,

can promote motility in vitro in microglial cells that express

both CB1 and CB2 receptors upon activation (Walter et al.,

2003). This group have also shown that PEA, which is

increased after experimental focal cerebral ischaemia, can

potentiate anandamide-induced microglial motility (Frank-

lin et al., 2003). Leukocytes infiltrating the brain following

an ischaemic episode may excacerbate the inflammatory

response and reducing this infiltration could be beneficial as

seen in neutropenic animals subjected to experimental

stroke (Connolly et al., 1996). Preliminary studies show

that AEA can inhibit fMLP-induced neutrophil migration in

a concentration-dependent manner (McHugh and Ross,

2004).

The notion that cannabinoids may be useful in neuro-

inflammation has been particularly well studied exper-

imentally in animal models of multiple sclerosis (for

reviews see Baker et al., 2003; Walter and Stella, 2004).

Thus, for example, Croxford and Miller (2003) have

shown that in mice infected with Theilers murine

encephalomyelitis virus (TMEV), the levels of mRNA

for proinflammatory cytokines were decreased by WIN

55,212-2. This compound also affects leukocyte function

and neurological signs in mice with experimental auto-

immune encephalomyelitis (Baker et al., 2000; Ni et al.,

2004), although different CB receptors may be involved in

the different effects. With respect to endocannabinoids,

spinal and brain levels of AEA are increased in animals

showing spasticity in an animal model of multiple

sclerosis (chronic relapsing experimental allergic encepha-

lomyelitis in mice), and the spasticity could be reduced by
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AM404, VDM11 and the FAAH inhibitor AM374 (Baker

et al., 2001). CB1�/� mice were more susceptible to

injury in this model than wild-type animals (Pryce et al.,

2003), suggesting a protective endocannabinoid tonus.

Similarly, three-dimensional mouse aggregate brain cul-

tures from CB1�/� mice were more susceptible to the

deleterious effects of interferon-gamma (Jackson et al.,

2004). The recent case report of an individual developing

multiple sclerosis after starting treatment with rimonabant

for obesity (van Oosten et al., 2004) would also be an

alarming result of such a protective role played by the

endocannabinoid system. However, as pointed out by the

authors of that report, this occurrence of multiple sclerosis

may be purely coincidental.

Taken together, the above studies suggest that potentia-

tion of endocannabinoids will affect neuronal survival and

function. In their study, Berger et al. (2004) concluded that

‘‘It remains unclear by what mechanism NAEs [N-acyl

ethanolamines], including anandamide, accumulate under

ischemic conditions and whether this accumulation has any

beneficial or adverse effects’’. In line with this, Clement et

al. (2003) suggested that ‘‘The context-dependent effects

that cannabinoids exhibit on neural circuits, in combination

with the broad distribution of the CB1 receptor in the CNS,

make it difficult to predict the net impact of CB1 activation

on complex pathological events such as seizure and

neurotoxicity’’. Nevertheless, in the right context, enhance-

ment of endocannabinoid tone may be a useful neuro-

protective strategy.
7. Conclusions

The present review has attempted to present the pharma-

cology of the endocannabinoid system, and to give two

examples where this system may provide a useful therapeutic

target. Although the current arsenal of compounds has

enabled considerable information to be obtained with respect

to the physiological roles played by the endocannabinoid

system, we still lack compounds selectively interfering with

the synthesis of AEA, and with the MAG lipase catalysed

breakdown of 2-AG. It is to be hoped that such compounds

will be found, and allow the elucidation of the roles played

by the individual endocannabinoids.
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